Health Monitoring of Aerospace Structures – Smart Sensor Technologies and Signal Processing

Smart Sensor Technologies and Signal Processing

Gebonden Engels 2003 9780470843406
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Providing quality research for the reader, this title encompasses all the recent developments in smart sensor technology for health monitoring in aerospace structures, providing a valuable introduction to damage detection techniques. Focussing on engineering applications, all chapters are written by smart structures and materials experts from aerospace manufacturers and research/academic institutions.

This key reference:

Discusses the most important aspects related to smart technologies for damage detection; this includes not only monitoring techniques but also aspects related to specifications, design parameters, assessment and qualification routes.
Presents real case studies and applications; this includes in–flight tests; the work presented goes far beyond academic research applications.
Displays a balance between theoretical developments and engineering applications

Specificaties

ISBN13:9780470843406
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:288

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

List of Contributors.
<p>Preface.</p>
<p>1. Introduction (G. Bartelds, J.H. Heida, J. McFeat and C. Boller).</p>
<p>1.1 Health and Usage Monitoring in Aircraft Structures Why and How?</p>
<p>1.2 Smart Solution in Aircraft Monitoring.</p>
<p>1.3 End–User Requirements.</p>
<p>1.3.1 Damage Detection.</p>
<p>1.3.2 Load History Monitoring.</p>
<p>1.4 Assessment of Monitoring Technologies.</p>
<p>1.5 Background of Technology Qualification Process.</p>
<p>1.6 Technology Qualification.</p>
<p>1.6.1 Philosophy.</p>
<p>1.6.2 Performance and Operating Requirements.</p>
<p>1.6.3 Qualification Evidence Requirements and Provision.</p>
<p>1.6.4 Risks.</p>
<p>1.7 Flight Vehicle Certification.</p>
<p>1.8 Summary.</p>
<p>References.</p>
<p>2. Aircraft Structural Health and Usage Monitoring (C. Boller and W.J. Staszewski).</p>
<p>2.1 Introduction.</p>
<p>2.2 Aircraft Structural Damage.</p>
<p>2.3 Ageing Aircraft Problem.</p>
<p>2.4 LifeCycle Cost of Aerospace Structures.</p>
<p>2.4.1 Background.</p>
<p>2.4.2 Example.</p>
<p>2.5 Aircraft Structural Design.</p>
<p>2.5.1 Background.</p>
<p>2.5.2 Aircraft Design Process.</p>
<p>2.6 Damage Monitoring Systems in Aircraft.</p>
<p>2.6.1 Loads Monitoring.</p>
<p>2.6.2 Fatigue Monitoring.</p>
<p>2.6.3 Load Models.</p>
<p>2.6.4 Disadvantages of Current Loads Monitoring Systems.</p>
<p>2.6.5 Damage Monitoring and Inspections.</p>
<p>2.7 Non–Destructive Testing.</p>
<p>2.7.1 Visual Inspection.</p>
<p>2.7.2 Ultrasonic Inspection.</p>
<p>2.7.3 Eddy Current.</p>
<p>2.7.4 Acoustic Emission.</p>
<p>2.7.5 Radiography, Thermography and Shearography.</p>
<p>2.7.6 Summary.</p>
<p>2.8 Structural Health Monitoring.</p>
<p>2.8.1 Vibration and Modal Analysis.</p>
<p>2.8.2 Impact Damage Detection.</p>
<p>2.9 Emerging Monitoring Techniques and Sensor Technologies.</p>
<p>2.9.1 Smart Structures and Materials.</p>
<p>2.9.2 Damage Detection Techniques.</p>
<p>2.9.3 Sensor Technologies.</p>
<p>2.9.4 Intelligent Signal Processing.</p>
<p>2.10 Conclusions.</p>
<p>References.</p>
<p>3. Operational Load Monitoring Using Optical Fibre Sensors (P. Foote, M. Breidne, K. Levin, P. Papadopolous, I. Read, M. Signorazzi, L.K. Nilsson, R. Stubbe and A. Claesson).</p>
<p>3.1 Introduction.</p>
<p>3.2 Fibre Optics.</p>
<p>3.2.1 Optical Fibres.</p>
<p>3.2.2 Optical Fibre Sensors.</p>
<p>3.2.3 Fibre Bragg Grating Sensors.</p>
<p>3.3 Sensor Target Specifications.</p>
<p>3.4 Reliability of Fibre Bragg Grating Sensors.</p>
<p>3.4.1 Fibre Strength Degradation.</p>
<p>3.4.2 Grating Decay.</p>
<p>3.4.3 Summary.</p>
<p>3.5 Fibre Coating Technology.</p>
<p>3.5.1 Polyimide Chemistry and Processing.</p>
<p>3.5.2 Polyimide Adhesion to Silica.</p>
<p>3.5.3 Silane Adhesion Promoters.</p>
<p>3.5.4 Experimental Example.</p>
<p>3.5.5 Summary.</p>
<p>3.6 Example of Surface Mounted Operational Load Monitoring Sensor System.</p>
<p>3.6.1 Sensors.</p>
<p>3.6.2 Optical Signal Processor.</p>
<p>3.6.3 Optical Interconnections.</p>
<p>3.7 Optical Fibre Strain Rosette.</p>
<p>3.8 Example of Embedded Optical Impact Detection System.</p>
<p>3.9 Summary.</p>
<p>References.</p>
<p>4. Damage Detection Using Stress and Ultrasonic Waves (W.J. Staszewski, C. Boller, S. Grondel, C. Biemans, E. O Brien, C. Delebarre and G.R. Tomlinson).</p>
<p>4.1 Introduction.</p>
<p>4.2 Acoustic Emission.</p>
<p>4.2.1 Background.</p>
<p>4.2.2 Transducers.</p>
<p>4.2.3 Signal Processing.</p>
<p>4.2.4 Testing and Calibration.</p>
<p>4.3 Ultrasonics.</p>
<p>4.3.1 Background.</p>
<p>4.3.2 Inspection Modes.</p>
<p>4.3.3 Transducers.</p>
<p>4.3.4 Display Modes.</p>
<p>4.4 Acousto–Ultrasonics.</p>
<p>4.5 Guided Wave Ultrasonics.</p>
<p>4.5.1 Background.</p>
<p>4.5.2 Guided Waves.</p>
<p>4.5.3 Lamb Waves.</p>
<p>4.5.4 Monitoring Strategy.</p>
<p>4.6 Piezoelectric Transducers.</p>
<p>4.6.1 Piezoelectricity and Piezoelectric Materials.</p>
<p>4.6.2 Constitutive Equations.</p>
<p>4.6.3 Properties.</p>
<p>4.7 Passive Damage Detection Examples.</p>
<p>4.7.1 Crack Monitoring Using Acoustic Emission.</p>
<p>4.7.2 Impact Damage Detection in Composite Materials.</p>
<p>4.8 Active Damage Detection Examples.</p>
<p>4.8.1 Crack Monitoring in Metallic Structures Using Broadband Acousto–Ultrasonics.</p>
<p>4.8.2 Impact Damage Detection in Composite Structures Using Lamb Waves.</p>
<p>4.9 Summary.</p>
<p>References.</p>
<p>5. Signal Processing for Damage Detection (W.J. Staszewski and K. Worden).</p>
<p>5.1 Introduction.</p>
<p>5.2 Data Pre–Processing.</p>
<p>5.2.1 Signal Smoothing.</p>
<p>5.2.2 Signal Smoothing Filters.</p>
<p>5.3 Signal Features for Damage Identification.</p>
<p>5.3.1 Feature Extraction.</p>
<p>5.3.2 Feature Selection.</p>
<p>5.4 Time Domain Analysis.</p>
<p>5.5 Spectral Analysis.</p>
<p>5.6 Instantaneous Phase and Frequency.</p>
<p>5.7 Time Frequency Analysis.</p>
<p>5.8 Wavelet Analysis.</p>
<p>5.8.1 Continuous Wavelet Transform.</p>
<p>5.8.2 Discrete Wavelet Transform.</p>
<p>5.9 Dimensionality Reduction Using Linear and Nonlinear Transformation.</p>
<p>5.9.1 Principal Component Analysis.</p>
<p>5.9.2 Sammon Mapping.</p>
<p>5.10 Data Compression Using Wavelets.</p>
<p>5.11 Wavelet–Based Denoising.</p>
<p>5.12 Pattern Recognition for Damage Identification.</p>
<p>5.13 Artificial Neural Networks.</p>
<p>5.13.1 Parallel Processing Paradigm.</p>
<p>5.13.2 The Artificial Neuron.</p>
<p>5.13.3 Multi–Layer Networks.</p>
<p>5.13.4 Multi–Layer Perceptron Neural Networks and Others.</p>
<p>5.13.5 Applications.</p>
<p>5.14 Impact Detection in Structures Using Pattern Recognition.</p>
<p>5.14.1 Detection of Impact Positions.</p>
<p>5.14.2 Detection of Impact Energy.</p>
<p>5.15 Data Fusion.</p>
<p>5.16 Optimised Sensor Distributions.</p>
<p>5.16.1 Informativeness of Sensors.</p>
<p>5.16.2 Optimal Sensor Location.</p>
<p>5.17 Sensor Validation.</p>
<p>5.18 Conclusions.</p>
<p>References.</p>
<p>6. Structural Health Monitoring Evaluation Tests (P.A. Lloyd, R. Pressland, J. McFeat, I. Read, P. Foote, J.P. Dupuis, E. O Brien, L. Reithler, S. Grondel, C. Delebarre, K. Levin, C. Boller, C. Biemans and W.J. Staszewski).</p>
<p>6.1 Introduction.</p>
<p>6.2 Large–Scale Metallic Evaluator.</p>
<p>6.2.1 Lamb Wave Results from Riveted Metallic Specimens.</p>
<p>6.2.2 Acoustic Emission Results from a Full–Scale Fatigue Test.</p>
<p>6.3 Large–Scale Composite Evaluator.</p>
<p>6.3.1 Test Article.</p>
<p>6.3.2 Sensor and Specimen Integration.</p>
<p>6.3.3 Impact Tests.</p>
<p>6.3.4 Damage Detection Results Distributed Optical Fibre Sensors.</p>
<p>6.3.5 Damage Detection Results Bragg Grating Sensors.</p>
<p>6.3.6 Lamb Wave Damage Detection System.</p>
<p>6.4 Flight Tests.</p>
<p>6.4.1 Flying Test–Bed.</p>
<p>6.4.2 Acoustic Emission Optical Damage Detection System.</p>
<p>6.4.3 Bragg Grating Optical Load Measurement System.</p>
<p>6.4.4 Fibre Optic Load Measurement Rosette System.</p>
<p>6.5 Summary.</p>
<p>References.</p>
<p>Index.</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Health Monitoring of Aerospace Structures – Smart Sensor Technologies and Signal Processing