, ,

Smart Decisions in Complex Systems

Gebonden Engels 2017 9781786301109
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Faced with ever–increasing complexity on a daily basis, the decision–makers of today are struggling to find the appropriate models, methods and tools to face the issues arising in complex systems across all levels of global operations.

Having, in the past, resorted to outdated approaches which limit problem–solving to linear world views, we must now capitalize on complexities in order to succeed and progress in our society.

This book provides a guide to harnessing the wealth inherent to complex systems. It organizes the transition to complex decision–making in all business spheres while providing many examples in various application domains.

The authors offer fresh developments for understanding and mastering the global uberization of the economy, the post–modern management of computer–assisted production and the rise of cognitive robotics science applications.

Specificaties

ISBN13:9781786301109
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:384

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>Contents</p>
<p>Preface xiii</p>
<p>Acknowledgments&nbsp;&nbsp; &nbsp;xvii</p>
<p>List of Acronyms &nbsp;xix</p>
<p>Introduction &nbsp;&nbsp;xxv</p>
<p>Part 1. 1</p>
<p>Chapter 1. The Foundations of Complexity &nbsp;3</p>
<p>1.1. Complexities and simplexities: paradigms and perspectives&nbsp;&nbsp; &nbsp;3</p>
<p>1.1.1. Positioning the problem 4</p>
<p>1.1.2. Reminders, basics and neologisms &nbsp;&nbsp;&nbsp;5</p>
<p>1.1.3. What are the analytical steps in a complex system? &nbsp;&nbsp;16</p>
<p>1.1.4. Organization and management principles in complex systems&nbsp;&nbsp; &nbsp;31</p>
<p>1.1.5. Action and decision processes in self–organized systems&nbsp;&nbsp; &nbsp;35</p>
<p>1.1.6. Notions of centralization and decentralization &nbsp;&nbsp;&nbsp;36</p>
<p>1.2. What is the prerequisite for the handling of a complex system?&nbsp;&nbsp; &nbsp;43</p>
<p>1.3. Applications: industrial complex systems &nbsp;&nbsp;45</p>
<p>1.3.1. Distributed workshop management system &nbsp;&nbsp;&nbsp;&nbsp;45</p>
<p>1.3.2. Analysis and diagnosis of a complex system &nbsp;&nbsp;&nbsp;&nbsp;47</p>
<p>1.3.3. Some recommendations and comments to conclude &nbsp;48</p>
<p>1.4. Time to conclude&nbsp;&nbsp; &nbsp;50</p>
<p>1.4.1. Summary &nbsp;50</p>
<p>1.4.2. Lessons and perspectives &nbsp;&nbsp;51</p>
<p>Part 2. 53</p>
<p>Chapter 2. Evidencing Field Complexity &nbsp;&nbsp;55</p>
<p>2.1. Introduction &nbsp;&nbsp;55</p>
<p>2.2. Qualitative study of deterministic chaos in a dynamic simple system &nbsp;&nbsp;58</p>
<p>2.2.1. Description of a few simple cases &nbsp;&nbsp;&nbsp;58</p>
<p>2.2.2. Initial conditions related to the emergence of chaos &nbsp;59</p>
<p>2.2.3. Modeling and mathematical analysis of chaos &nbsp;&nbsp;&nbsp;62</p>
<p>2.2.4. Application at the level of a simple cell &nbsp;63</p>
<p>2.3. Test for the presence of deterministic chaos in a simple dynamic system &nbsp;68</p>
<p>2.3.1. Characterization of the systems studied &nbsp;69</p>
<p>2.3.2. A general question: is there deterministic chaos? &nbsp;&nbsp;70</p>
<p>2.4. Properties of chaos in complex systems &nbsp;&nbsp;77</p>
<p>2.4.1. Study of an elementary cell &nbsp;&nbsp;77</p>
<p>2.4.2. Complex cellular systems &nbsp;&nbsp;81</p>
<p>2.5. Effects of fractal chaos in Complexity theory &nbsp;&nbsp;&nbsp;&nbsp;83</p>
<p>2.5.1. Organized complexity 83</p>
<p>2.5.2. Innovative complexity 84</p>
<p>2.5.3. Random complexity &nbsp;85</p>
<p>2.5.4. Principles of implementation &nbsp;&nbsp;&nbsp;&nbsp;87</p>
<p>2.6. Self–organization: relations and the role of chaos &nbsp;&nbsp;&nbsp;87</p>
<p>2.6.1. Introduction&nbsp;&nbsp; &nbsp;87</p>
<p>2.6.2. How to combine self–organization and chaos &nbsp;&nbsp;&nbsp;88</p>
<p>2.6.3. Critical self–organized systems &nbsp;&nbsp;&nbsp;&nbsp;89</p>
<p>2.6.4. Networked systems and co–operative systems &nbsp;&nbsp;&nbsp;90</p>
<p>2.6.5. The three states of a dynamic complex system &nbsp;&nbsp;&nbsp;93</p>
<p>2.6.6. Towards a typology of behavioral complexity &nbsp;&nbsp;&nbsp;94</p>
<p>2.7. Applications: introduction of new concepts in systems &nbsp;&nbsp;95</p>
<p>2.7.1. Questions on the management of complex industrial systems &nbsp;95</p>
<p>2.7.2. Implementation of the concepts of chaos and self–organization &nbsp;96</p>
<p>2.8. Conclusions &nbsp;&nbsp;98</p>
<p>Chapter 3. The New Complex Operational Context &nbsp;101</p>
<p>3.1. The five phases of economy how everything</p>
<p>accelerates at the same time &nbsp;101</p>
<p>3.2. The expected impact on just about everything &nbsp;&nbsp;&nbsp;&nbsp;105</p>
<p>Chapter 4. Taking Up Complexity &nbsp;&nbsp;&nbsp;&nbsp;109</p>
<p>4.1. Taking into account complex models &nbsp;&nbsp;&nbsp;109</p>
<p>4.1.1. A brief overview of the approach called complexity &nbsp;109</p>
<p>4.1.2. Another (bio–inspired) vision of the world: universality&nbsp;&nbsp; &nbsp;112</p>
<p>4.1.3. How to address complexity in this universal world? &nbsp;115</p>
<p>4.1.4. The usefulness of this book &nbsp;&nbsp;116</p>
<p>4.2. Economy and management of risks &nbsp;&nbsp;&nbsp;&nbsp;117</p>
<p>4.2.1. Important challenges to raise &nbsp;&nbsp;&nbsp;&nbsp;117</p>
<p>4.2.2. Adapted vocabulary that it is useful to adopt &nbsp;&nbsp;&nbsp;&nbsp;118</p>
<p>4.2.3. What do we mean by dynamic pricing? &nbsp;119</p>
<p>Part 3. 121</p>
<p>Chapter 5. Tackling Complexity with a Methodology &nbsp;&nbsp;123</p>
<p>5.1. Any methodology must first enrich the systemic interrelationships &nbsp;123</p>
<p>5.1.1. The innovation economy: the dynamic management of innovation &nbsp;&nbsp;124</p>
<p>5.1.2. A basic mechanism of efficient innovation &nbsp;&nbsp;&nbsp;&nbsp;125</p>
<p>5.1.3. The benefits of such a shift mechanism &nbsp;126</p>
<p>5.2. Towards a transdisciplinary co–economy &nbsp;&nbsp;126</p>
<p>Chapter 6. Management and Control of Complex Systems&nbsp; &nbsp;129</p>
<p>6.1. Introduction &nbsp;&nbsp;129</p>
<p>6.2. Complex systems: the alternatives &nbsp;&nbsp;&nbsp;&nbsp;132</p>
<p>6.2.1. Notions of sociability in agent communities &nbsp;&nbsp;&nbsp;&nbsp;132</p>
<p>6.2.2. The evolutionary principles of complex systems &nbsp;&nbsp;134</p>
<p>6.3. Control principles of production systems &nbsp;&nbsp;135</p>
<p>6.3.1. Introduction&nbsp;&nbsp; &nbsp;135</p>
<p>6.3.2. Control: by scheduling or by configuration? &nbsp;&nbsp;&nbsp;&nbsp;136</p>
<p>6.3.3. The tools used in monitoring and control &nbsp;140</p>
<p>6.4. PABADIS: an example of decentralized control &nbsp;&nbsp;&nbsp;&nbsp;141</p>
<p>6.4.1. Introduction&nbsp;&nbsp; &nbsp;141</p>
<p>6.4.2. Context and objectives of the PABADIS project &nbsp;&nbsp;142</p>
<p>6.4.3. Conceptual overview of PABADIS &nbsp;&nbsp;142</p>
<p>6.4.4. Principle of adopted convergence: the inverse solution&nbsp;&nbsp; &nbsp;144</p>
<p>6.4.5. Implementation&nbsp; &nbsp;145</p>
<p>6.5. Generalization of the concepts and mechanisms &nbsp;&nbsp;&nbsp;&nbsp;146</p>
<p>6.5.1. Introduction&nbsp;&nbsp; &nbsp;146</p>
<p>6.5.2. Allocation of resources: the agents in complex production systems&nbsp;&nbsp; &nbsp;147</p>
<p>6.5.3. Allocation of resources: the negotiation protocols &nbsp;&nbsp;147</p>
<p>6.5.4. Optimization of the resource allocation process &nbsp;&nbsp;&nbsp;148</p>
<p>6.6. A basic mechanism of control the auction &nbsp;150</p>
<p>6.6.1. Introduction&nbsp;&nbsp; &nbsp;150</p>
<p>6.6.2. The mechanism of the auction &nbsp;&nbsp;&nbsp;&nbsp;151</p>
<p>6.6.3. Comparative review of the types of auctions &nbsp;&nbsp;&nbsp;&nbsp;153</p>
<p>6.6.4. Findings on the interest of the auction mechanism &nbsp;&nbsp;155</p>
<p>6.7. The control of self–organized systems &nbsp;&nbsp;&nbsp;156</p>
<p>6.7.1. Introduction&nbsp;&nbsp; &nbsp;156</p>
<p>6.7.2. The types and mechanisms of self–organization &nbsp;&nbsp;&nbsp;157</p>
<p>6.7.3. Towards a dynamic integrated model: Cellular Automata (CA)&nbsp; &nbsp;160</p>
<p>6.7.4. Self–organization: forms and configurations obtained &nbsp;165</p>
<p>6.7.5. Conclusion and implementation of the ACCA concept, a major model&nbsp; &nbsp;167</p>
<p>Chapter 7. Platforms for Taking up Complexity &nbsp;&nbsp;&nbsp;169</p>
<p>7.1. The VFDCS: a platform for implementation &nbsp;169</p>
<p>7.1.1. Controlling the phenomena of self–organization &nbsp;&nbsp;&nbsp;171</p>
<p>7.1.2. Methodology for implementation and the validation of concepts&nbsp; &nbsp;172</p>
<p>7.2. The application of VFDCS: the auction market &nbsp;&nbsp;&nbsp;&nbsp;174</p>
<p>7.2.1. The concept of the Container in the auction market &nbsp;176</p>
<p>7.2.2. Feedbacks and results 176</p>
<p>7.2.3. Discussion &nbsp;178</p>
<p>7.3. The application of VFDCS: the virtual supply chain &nbsp;&nbsp;179</p>
<p>7.3.1. Introduction&nbsp;&nbsp; &nbsp;179</p>
<p>7.3.2. Architecture of the virtual supply chain &nbsp;181</p>
<p>7.3.3. Results and comments 184</p>
<p>7.3.4. Conclusion &nbsp;185</p>
<p>7.3.5. Enhancement of the multi–agent platform &nbsp;&nbsp;&nbsp;&nbsp;186</p>
<p>7.4. General method for the control of systems &nbsp;186</p>
<p>7.4.1. Introduction&nbsp;&nbsp; &nbsp;186</p>
<p>7.4.2. Reminders and definitions &nbsp;&nbsp;187</p>
<p>7.4.3. Analytical approach to consistency &nbsp;&nbsp;188</p>
<p>7.4.4. Methods for the analysis and monitoring of performances &nbsp;189</p>
<p>7.4.5. Critical analysis of the convergence of configurations &nbsp;192</p>
<p>7.5. Conclusions and prospects 194</p>
<p>7.5.1. Synthesis &nbsp;194</p>
<p>7.5.2. Discussion &nbsp;195</p>
<p>7.5.3. Comparison of approaches, tools and applications &nbsp;&nbsp;197</p>
<p>7.5.4. Results &nbsp;&nbsp;199</p>
<p>Part 4. 201</p>
<p>Introduction to Part 4&nbsp; &nbsp;203</p>
<p>Chapter 8. Applying Intrinsic Complexity:</p>
<p>The Uberization of the Economy &nbsp;&nbsp;&nbsp;&nbsp;207</p>
<p>8.1. Preamble &nbsp;&nbsp;207</p>
<p>8.2. The context: new opportunities and new consumption needs &nbsp;207</p>
<p>8.3. The domains that are studied in this chapter &nbsp;208</p>
<p>8.4. Concepts, definitions and remainders &nbsp;&nbsp;&nbsp;209</p>
<p>8.4.1. Uberization&nbsp;&nbsp; &nbsp;209</p>
<p>8.4.2. Digitalization of the economy &nbsp;&nbsp;&nbsp;&nbsp;210</p>
<p>8.4.3. Collaborative consumption (CC) &nbsp;&nbsp;&nbsp;211</p>
<p>8.4.4. Model generalization: the sharing economy &nbsp;&nbsp;&nbsp;&nbsp;211</p>
<p>8.4.5. Participatory financing 211</p>
<p>8.5. The business model and key elements &nbsp;&nbsp;&nbsp;213</p>
<p>8.5.1. Practicing networks &nbsp;213</p>
<p>8.5.2. Positive and negative impacts of network applications &nbsp;&nbsp;214</p>
<p>8.5.3. The problem of producer consumers and consumer producers&nbsp;&nbsp; &nbsp;215</p>
<p>8.5.4. Underlying mechanisms: some differences with the usual economic systems 216</p>
<p>8.5.5. A form of social hypocrisy? &nbsp;&nbsp;217</p>
<p>8.5.6. Generalization: the management rules for P2P &nbsp;&nbsp;&nbsp;219</p>
<p>8.6. The problem of property and resource allocation. &nbsp;&nbsp;&nbsp;220</p>
<p>8.6.1. The growing role of platforms &nbsp;&nbsp;&nbsp;&nbsp;220</p>
<p>8.6.2. The prisoner s dilemma 223</p>
<p>8.6.3. Games theory: an introduction &nbsp;&nbsp;&nbsp;&nbsp;224</p>
<p>8.6.4. Nonlinear models in game theory &nbsp;&nbsp;&nbsp;224</p>
<p>8.7. The uberization approach in context &nbsp;&nbsp;&nbsp;226</p>
<p>8.7.1. Simplexification.&nbsp; &nbsp;227</p>
<p>8.7.2. Increasing complexity: the influence of cognitive approaches&nbsp;&nbsp; &nbsp;227</p>
<p>8.8. Generalization: the complexity of allocation problems &nbsp;&nbsp;230</p>
<p>8.9. Conclusion &nbsp;&nbsp;234</p>
<p>Chapter 9. Computer–assisted Production Management&nbsp;&nbsp; &nbsp;235</p>
<p>9.1. Introduction and reminders 235</p>
<p>9.2. Intercommunication networks &nbsp;&nbsp;236</p>
<p>9.2.1. Notions of complexity in networks &nbsp;&nbsp;236</p>
<p>x Smart Decisions in Complex Systems</p>
<p>9.2.2. A few concepts of parallelism &nbsp;&nbsp;&nbsp;&nbsp;237</p>
<p>9.2.3. Elements of parallelism and associated architectures &nbsp;237</p>
<p>9.2.4. Transposition into industrial or social applications &nbsp;&nbsp;239</p>
<p>9.3. Communication network topologies &nbsp;&nbsp;&nbsp;240</p>
<p>9.3.1. Some characteristics of different network topologies &nbsp;241</p>
<p>9.3.2. Construction of a hypercube &nbsp;&nbsp;&nbsp;&nbsp;242</p>
<p>9.3.3. Notions of symmetry: cutting a hypercube &nbsp;&nbsp;&nbsp;&nbsp;243</p>
<p>9.3.4. The shortest path between two processors &nbsp;&nbsp;&nbsp;&nbsp;244</p>
<p>9.4. A few important properties 244</p>
<p>9.5. Analysis of new concepts and methods in manufacturing sciences: instabilities, responsiveness and flexibility &nbsp;&nbsp;&nbsp;&nbsp;246</p>
<p>9.5.1. General approach: planning and scheduling &nbsp;&nbsp;&nbsp;&nbsp;247</p>
<p>9.5.2. Illustration in management systems &nbsp;&nbsp;247</p>
<p>9.5.3. Problems and remarks 250</p>
<p>9.5.4. Improvements in planning and scheduling &nbsp;&nbsp;&nbsp;&nbsp;251</p>
<p>9.5.5. Improvements in configuration/reconfiguration &nbsp;&nbsp;&nbsp;252</p>
<p>9.5.6. Global improvements through simulation &nbsp;&nbsp;&nbsp;&nbsp;253</p>
<p>9.5.7. Inverse modeling and simulation &nbsp;&nbsp;&nbsp;254</p>
<p>9.6. New concepts for managing complex systems &nbsp;&nbsp;&nbsp;&nbsp;256</p>
<p>9.6.1. Traditional approach &nbsp;257</p>
<p>9.6.2. Recent improvements in the management of systems &nbsp;260</p>
<p>9.7. The change of conduct &nbsp;264</p>
<p>9.8. Improvements in manufacturing: process balancing &nbsp;&nbsp;&nbsp;266</p>
<p>9.9. Conclusion: main action principles in complex environments &nbsp;&nbsp;267</p>
<p>Chapter 10. Complexity and Cognitive Robotics &nbsp;&nbsp;&nbsp;271</p>
<p>10.1. Introduction &nbsp;271</p>
<p>10.2. The new industrial revolution &nbsp;&nbsp;272</p>
<p>10.3. The factory of the future: trend or revolution? &nbsp;&nbsp;&nbsp;&nbsp;272</p>
<p>10.4. Inputs for the factory of the future and their impact on the industry s professions &nbsp;275</p>
<p>10.5. Conditions for success &nbsp;276</p>
<p>10.6. The data sciences&nbsp;&nbsp; &nbsp;277</p>
<p>10.6.1. Introduction to the characteristics of Big Data &nbsp;&nbsp;277</p>
<p>10.6.2. The problem of Big Data &nbsp;&nbsp;277</p>
<p>10.6.3. A new profession: the data scientist &nbsp;&nbsp;279</p>
<p>10.6.4. Some ask, how will this be possible? &nbsp;279</p>
<p>10.6.5. The field of large numbers &nbsp;&nbsp;280</p>
<p>10.7. A few technologies in data sciences &nbsp;&nbsp;&nbsp;281</p>
<p>10.7.1. The steps of reasoning based on the experience of the inductive approach and on the verification of hypotheses &nbsp;&nbsp;281</p>
<p>10.7.2. The Lasso method 281</p>
<p>10.7.3. Kernel regression methods &nbsp;&nbsp;282</p>
<p>10.7.4. The random forests &nbsp;283</p>
<p>10.7.5. Neural networks&nbsp; &nbsp;284</p>
<p>10.7.6. Comments on clustering and graph partitioning issues 286</p>
<p>10.7.7. Cognitive informatics cognitivism &nbsp;&nbsp;286</p>
<p>10.8. Mechanisms of conventional cognitive engineering &nbsp;&nbsp;288</p>
<p>10.9. The new mechanisms of engineering &nbsp;&nbsp;&nbsp;289</p>
<p>10.9.1. Transduction&nbsp;&nbsp; &nbsp;289</p>
<p>10.9.2. Reasoning by constructed analogies &nbsp;&nbsp;290</p>
<p>10.10. The study of links and relationships in large databases &nbsp;290</p>
<p>10.10.1. Comment&nbsp;&nbsp; &nbsp;291</p>
<p>10.11. Application of cognitive robotics: the Watson platform &nbsp;291</p>
<p>10.11.1. Applications&nbsp; &nbsp;292</p>
<p>10.12. The impossibilities and unpredictabilities of complexity&nbsp;&nbsp; &nbsp;293</p>
<p>10.13. Current strategies of digitalization &nbsp;&nbsp;&nbsp;295</p>
<p>10.13.1. Reference examples and discussion &nbsp;296</p>
<p>10.13.2. GNOSIS &nbsp;298</p>
<p>10.13.3. Data is Centric &nbsp;299</p>
<p>10.14. Conclusion: a maximum risk economy &nbsp;&nbsp;300</p>
<p>Bibliography &nbsp;&nbsp;303</p>
<p>Index &nbsp;327</p>

Managementboek Top 100

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Smart Decisions in Complex Systems